

Sea Ice Velocity Observed by HF Radar: Comparison with ADCP and Drifting Buoy Measurements

<u>Wei Zhang¹</u>, Naoto Ebuchi¹, Brian Emery², Feng Cheng³, Hiroto Abe¹, Takenobu Toyota¹, and Kunio Shirasawa¹ ¹Institute of Low Temperature Science, Hokkaido University ²Marine Science Institute, University of California Santa Barbara ³Electronic Information School, Wuhan University

Review of HF radar sea ice measurement

HF radar has been used for pack ice and iceberg detection in past 30 years, but it is not completely developed due to NO velocity comparison in details.

Previous Study of these radar for sea ice

Shirasawa et al. (2013) used these radars to indirectly obtain sea ice distribution. HF radar provides surface currents data in open-water conditions, while areas with 'no current' can be identified as sea ice.

Objective of This Study

Investigate sea ice direct measurement by HF ocean radar.

Try to extract sea ice signal from HF radar raw data, and derive sea ice radial velocity and direction; (reported in 2014)

Compare HF radar sea ice velocity with that from ADCP and drifting buoy;

Analyze sea ice observation by HF ocean radar.

CODAR SeaSonde Radar Station

Waveform:

- Center frequency:
- Detection range:
- Range resolution:
- Angular resolution:
- FMCW 24.56 MHz 46.5 km 1.5 km 5 deg. ⁶

ALTREAM CA

Observed Range-Doppler Spectrum

Signal scattered from sea ice is significantly strong.

7

Earlier Part of This Study (Reported in 2014)

Sea ice radial velocity is roughly **consistent** with nearby current radial velocity.

ADCPs & Drifting Buoy Measurements

ADCP Sea Ice Velocity

Error velocity:

$$v_{err} = w_{12} - w_{34}$$

 $v_{err} \approx 0 m/s$, sea ice v_{err} noisy, open water

Figure 18. View facing an ADCP transducer. The layout is the same for both convex and concave transducers (see Figure 26).

ADCP:
$$|v_{err}| \le 1 \ cm/s$$

Belliveau et al. (1990)

Sea Ice Velocity Comparison at NS04

Radar Signal and Noise Floor at NS04

Sea Ice Velocity Comparison at NS04

Sea ice velocities from ADCP and HF radar are high **consistent**.

Sea Ice Velocity Time Series at OS04

Radar Signal and Noise Floor at OS04

Sea Ice Velocity Comparison at OS04

Sea ice velocities from ADCP and HF radar are **NOT** high consistent.

Sea Ice Velocity Time Series at OS06

Radar Signal and Noise Floor at OS06

Sea Ice Velocity Comparison at OS06

Sea ice velocities from ADCP and HF radar are **NOT** high consistent.

Total Comparison with ADCPs

Sea ice velocities from ADCPs and HF radar are roughly consistent.

Total Velocity Difference on SNR

Sea ice velocity difference trend decrease when SNR increases.

Total RMSD along with SNR

Sea ice velocities Root Mean Square Difference decrease when SNR increases.

Drifting Buoy Trace in 2004

28

Sea Ice Velocity Time Series

29

Sea Ice Velocity Comparison for Buoy

Sea ice velocities from HF radar and drifting buoy are **consistent**.

Missing Data (1)

- Signal is too weak to be recognized from noise.
 - Strong Radio Frequency Interference (noise floor) masks sea ice signal,
 - Sea ice is too thin/small to scatter distinct signal,
 - Signal attenuates over sea ice rapidly.

Missing Data (2)

- Signal contaminated by HF ocean radar system interference.
- Signals is assumed to be no more than 2 at each Doppler point due to MUSIC algorithm.

Interferenced Velocity: -3 cm/s $< V_i < 3$ cm/s

MUSIC algorithm: Antenna system with 3 sensors estimates no more than two signals at one Doppler point.

Summary

- HF ocean radar can observe sea ice motion, and obtain bearing angle and radial velocity.
- In nearshore, sea ice drift velocities obtained from HF ocean radar are consistent with that from ADCP and drifting buoy. The correlation is about 0.7 and 0.6, respectively, and the RMSD is about 21 cm/s.
- Low SNR induces inaccurate or missing data of sea ice measurement. It is mainly caused by RFI greatly increasing noise floor.

謝謝聆聽 Thank you for your Attention

本研究纯属胡诌,如有雷同,不一定巧合!